Data-center address as security guarantee
WSJ recently quoted a spokesman for Binance.US stating that all US customer data is stored on servers located in the US. The subtext of this remark is that by exclusion, customer information is not stored in China, an attempt to distance the company from concerns around the safety of customer information. Such new-found obsession with “data terroire” is a common interpretation of the data-sovereignty doctrine, which holds that information collected from citizens of a particular country must remain both geographically and legally subject to its privacy regulations. While the concept predates the Snowden revelations of 2013, it was given renewed urgency after disclosures of US surveillance programs leveraging massive data collections hoarded by private companies including Google, MSFT and Yahoo among others named as participants in the mysterious PRISM program of “upstream” collection. [Full disclosure: this blogger was a member of the Google security team from 2007-2013]
Data-sovereignty is a deceptively simple solution: If Google is forced to store private information of German citizens on servers physically located in Germany, the argument goes, then NSA— or its counterparts in China, Russia or whichever foreign policy boogeyman looms large in the imagination on a given day— can not unilaterally seize that data without going through the legal framework mandated by German law. This comforting narrative makes no sense from a technology perspective. (If it ever made sense in other terms, including lawful access frameworks. The NSA is legally barred from conducting surveillance on US soil. Moving data out of US into foreign countries amounts to declaring open season on those assets.) To explain why, we need to distinguish between two types of access: physical and logical.
One note about the hypotheticals explored here: the identity of the private companies hoarding sensitive customer information and the alleged boogeyman going after that stash varies according to the geopolitical flavor of the day. After Snowden, US tech giants were cast as either hapless victims or turncoat collaborators depending on your interpretation, while the NSA conveniently assumed the role of the arch-villain. For the purpose of this blog post we will use Binance/US and China as the stand in for these actors, with the full expectation that in a few years these examples will appear quite dated.
Physical access vs logical access
Imagine there is a server located inside a data-center in the middle of nowhere, as most datacenter are bound to be for proximity to cheap hydropower and low real-estate costs. This server is storing some important information you need to access. What are your options?
1. You can travel to the datacenter and walk up to the server directly. This is physical access. It unlocks some very convenient options. Server is stuck, not responding to requests? Press the power button and power-cycle it. Typical rack-mounted servers do not have a monitor, keyboard, mouse or any other peripherals attached for ease of use. But when you are standing next to the machine, you can connect anything you want. This allows getting an interactive shell and using it as a glorified workstation. One could even attach removable storage such as a USB thumb-drive for conveniently copying files. In a pinch, you could crack-open the server chassis and pocket one of the disk drives to hoover up its contents. As an added bonus: if you walk out of the datacenter with that drive, the challenge of reading its contents can be done later from the comfort of your office. (Incidentally the redundancy in most servers these days means that they will continue ticking on as if nothing happened after the removal of the drive, since they are designed to tolerate failure of individual components and “hot-swapping” of storage.) But all of this flexibility comes at a high cost. First you have to travel to the middle of nowhere which will likely involve a combination of flying and driving, then get past the access controls instituted by the DC operator. For the highest level of security in tier-4 datacenter that typically involves both an ID badge and biometrics such as palm scans for access to restricted areas. Incidentally the facility is covered with cameras everywhere, resulting in a permanent visual record of your presence, lest there be any doubt on what happened later.
2. Alternatively you can access the server remotely over a network using a widely deployed protocol such as SSH, RDP or IPMI. This is logical access. For all intents and purposes, the user experience is one of standing next to the machine staring at a console, minus the inconvenience of standing in the uncomfortable noisy, over-air-conditioned, florescent-lit datacenter aisle. Your display shows exactly the same thing you would see if you were logged into the machine with a monitor attached, modulo some lag in the display due to the time it takes for the signal to travel over a network. You can type commands and run applications exactly as if you had jury-rigged that keyboard/mouse/monitor setup with physical access. Less obvious is that many actions that we typically associate with physical access can be done remotely. Need to connect an exotic USB gadget to the remote server? Being thousands of miles away from the USB port may look like a deal-breaker but it turns out modern operating systems have the ability to virtually “transport” USB devices over a network. USB forwarding has been supported by Windows Remote Desktop Protocol (RDP) for over a decade, while the usbip package provides a comparable solution on Linux. Need to power-on a server that has mysteriously shutdown or reset one that has gotten wedged, not responding to network requests? There is a protocol for that too: IPMI. (IPMI runs on a different chip called the “baseboard management controller” or BMC located inside the server, so the server must still be connected to power and have a functioning network connection for its BMC which happens to be the usual state of affairs in a data-center.) Need to tweak some firmware options or temporarily boot into a different operating system from a removable drive? IPMI makes that possible too.
The only prerequisite for having all these capabilities at your fingertips from anywhere in the world is the foresight to have configure the system for remote access ahead of time. Logical access controls define which services are available remotely (eg SSH vs IPMI), who is allowed to connect, what hoops they jump through in order to authenticate— there is likely going to a be VPN or Virtual Private Network at the front door— and finally what privileges these individuals attain once authenticated. The company running that server gets to define these rules. They are completely independent of the physical access rules enforced by the datacenter, which may or may not even the same company. Those permitted to remotely access servers over a network could be a completely different set of individuals than those permitted to step inside the datacenter floor and walk up to that same server in real life.
Attack surface of logical access
Logical access is almost as powerful as physical access when it comes to accessing data while having the convenience of working form anywhere in the world. In some cases it is even more convenient. Let’s revisit the example from the previous section, of walking into a datacenter and physically extracting a couple of disk drives from a server, with the intention of reading their contents. (We assume the visitor resorted to this smash-and-grab option because they did not have the necessary credentials to login to the server and access the same data the easy way even while they were standing right next to it.) There are scenarios where that problem is not straightforward, such as when disk encryption is used or the volumes are part of a RAID array that must be reconstructed in a particular manner. Another challenge is retrieving transient data that is only available in memory, never persisted to disk. There are ways to do forensic memory acquisition from live systems, but the outcome is a snapshot that requires painstaking work to locate the proverbial needle in the haystack of a full memory dump. By comparison, if one could login to the server as a privileged user, with a few commands the running application could be reconfigured to start logging the additional information somewhere for easy retrieval.
There is another reason logical access beats physical access: it’s easier to hide. Logical access operates independently of physical access: there is no record of anyone getting on an airplane, driving up to the datacenter gates, pressing their palm on the biometric scanner or appearing on surveillance video wondering the aisles. The only audit trails are those implemented by the software running on those servers, easily subject to tampering once the uninvited visitors have full control over the system.
Data-nativism as security theater
This distinction between physical and logical access explains why the emphasis on datacenter location is a distraction. Situating servers in one location or another may influence physical access patterns but has no bearing on the far more important dimension of logical access. Revisiting the Binance/US example from the introduction to illustrate this, there are three threat models depending on the relationship between the company and alleged threat actor.
- Dishonest, outright colluding with the adversary to siphon US customer data
- Honest but helpless in the face of coercion from a foreign government to hand-over customer data
- Honest but clueless, unaware that APT associated with a foreign nation has breached its infrastructure for collecting customer data in an unauthorized manner
In the first case it is clear that the location of data-centers is irrelevant. Binance/US employees collectively have all necessary physical and logical access to copy whatever customer information is requested and turn it over to the authorities.
The second case is identical from capability standpoint. Binance/US employees are still in a position to retrieve customer data from any system under their control, regardless of its geographic location. The only difference is a legal norm that such requests be channeled through US authorities, under an existing Mutual Legal Assistance Treaty (MLAT) agreement. If China seeks information from a US company, the theory goes, it will route the request through DOJ who is responsible for applying appropriate safe-guards under the 4th amendment before forwarding the request to the eventual recipient. This is at best wishful thinking under the assumptions of our scenario— a rogue regime threatening private companies with retaliation if they do not comply with requests for access to customer information. Such threats are likely to bypass official diplomatic channels and be addressed to the target directly. (“It would be unfortunate if our regulators cracked down on your highly profitable cryptocurrency exchange.”) For-profit organizations on the receiving end of such threats will be disinclined to take a stand on principle or argue the nuances of due process. The relevant question is not whether data is hosted in a particular country of concern, but whether the company and/or its employees have significant ties to that country such that they could be coerced into releasing customer information through extra-judicial requests.
A direct attack on Binance infrastructure is one where geography would most likely come into play. Local jurisdiction certainly make it easier to stage an all-out assault on a data-center and walk out with any desired piece of hardware. But as the preceding comparison of physical and logical access risks indicate, remote attacks using software exploits are a far more promising avenue of attack than kicking in the door. If the government of China wanted to size information from Binance, it is extremely unlikely to involve a SWAT-style smash-and-grab raid. Such overt actions are impossible to conceal; data-center facilities are some of the most tightly controlled and carefully monitored locations on the planet. Even if target is greatly motivated by PR concerns to conceal news of such raids, even limited knowledge of the incident breaks a cardinal rule of intelligence collection: not letting the adversary realize they are being surveilled. If nothing else, the company may think twice about placing additional infrastructure in the hostile country after the first raid. By comparison, pure digital attacks exploiting logical access can go undetected for a long time, even indefinitely depending on the relative level of sophistication between attacker vs defender. With the victim none the wiser, compromised systems continue running unimpeded, providing attackers an uninterrupted stream of intelligence.
Physical to logical escalation: attacker & defender view
This is not say that location is relevant. Putting servers into hostile territory can amplify risks involving logical access. One of the more disturbing allegations from the Snowden disclosures involve Google getting sold out by Level3, the ISP hired to provide network service to Google data-centers. Since Google at the time relied on a very naive model of internal security and traffic inside the perimeter was considered safe to transit without encryption, this would have given the NSA access to confidential information bouncing around the supposedly “trusted” internal network. Presumably a compliant ISP in China will be similarly willing to arrange for access to its customers’ private fiber connections than one located overseas. Other examples involve insider risks and more subtle acts of sabotage. For example the Soviet Union was able to hide listening devices within the structure of the US embassy in Moscow, not to mention backdoor typewriters sent for repair. Facilities located on foreign soil are more likely to have employees and contractors acting at the behest of local intelligence agencies. These agents need not even have any formal role that grants them access; recall the old adage that at 4AM the most privileged user on any computing system is the janitor.
One silver lining here is that risks involving pure physical access have become increasingly manageable with additional security technologies. Full-disk encryption means the janitor can walk away with a bundle of disk drives, but not read their contents. Encryption in transit means attackers tapping network connections will only observe ciphertext instead of the original data. Firmware controls such as secure boot and measured boot make it difficult to install rogue software undetected, while special-purpose hardware such as hardware security modules and TPMs prevent even authorized users from walking away with high-value cryptographic keys.
Confidential computing takes this model to its extreme conclusion. In this vision customers can enlist run their applications on distant cloud service providers and process sensitive data, all the while being confident that the cloud provider can not peek into that data or tamper with application logic— even when that application is running on servers owned by that provider with firmware and hypervisors again in the control of the same untrusted party. This was not possible using vanilla infrastructure providers such as AWS or Azure. Only the introduction of new CPU-level isolation models such as Intel SGX enclaves or AMD SEV virtual machines has made it possible to ask whether trust in the integrity of a server can be decoupled from physical access. Neither has achieved clear market dominance, but both approaches point towards a future where customers can locate servers anywhere in the world— including hostile countries where local authorities are actively seeking to compromise those devices— and still achieve some confidence that software running on those machines continues to follow expected security properties. Incidentally, this is a very challenging threat-model. It is no wonder both Intel and AMD have stumbled in their initial attempts. SGX has been riddled with vulnerabilities. (In a potential sign of retreat, Intel is now following in AMD’s path with an SEV competitor called Trust Domain Extensions or TDX.) Earlier iterations of SEV have not fared any better. Still it is worth remembering that Intel and AMD are trying to solve a far more challenging security problem than the ones facing by companies who operate data-centers in hostile countries, as in the case of Apple and China. Apple is not hosting its services out of some AWS-style service managed by CCCP in a mysterious building. While a recent NYT investigation revealed Apple made accommodations for guanxi, the company retains extensive control over their operational environment. Hardware configured by Apple is located inside a facility operated by Apple, managed by employees hand-picked by Apple, working according to rules laid down by Apple, monitored 24/7 by security systems overseen by Apple. That’s a far cry from trying to ascertain whether a blackbox in a remote Amazon AWS datacenter you can not see or touch— much less have any say in the initial configuration— is working as promised.
Beyond geography
Regulators dictating where citizens’ private information must be stored and companies defending their privacy record by stressing where customer data is not stored both share in the same flawed logic. Equating geography with data security reflects a fundamental misunderstanding of the threat model, focusing on physical access while neglecting the far more complex problems raised by the possibility of remote logical access to the same information from anywhere in the world.
CP